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Abstract
Fitting of parametric curves and surfaces to a set of given data points is a relevant
subject in various fields of science and engineering. In this paper, we review the current
orthogonal distance fitting algorithms for parametric models in a well organized and easily
understandable manner, and present a new algorithm. Each of these algorithms estimates
the model parameters minimizing the square sum of the error distances between the model
feature and the given data points. The model parameters are grouped and simultaneously
estimated in terms of form, position, and rotation parameters. The form parameters
determine the shape of the model feature, and the position/rotation parameters describe
the rigid body motion of the model feature. The new algorithm is applicable to any kind
of parametric curve and surface. We give fitting examples for circle, cylinder, and helix
in space.

1 Introduction
The use of parametric curves and surfaces is very common and model fitting to a set of
given data points is a relevant subject in various fields of science and engineering. For
fitting of curves and surfaces, orthogonal distance fitting is of primary concern because
of the applied error definition, namely the shortest distance from the given point to the
model feature [5, 9]. While there are orthogonal distance fitting algorithms for explicit [3],
and implicit models [2, 7] in the literature, we are considering in this paper fitting
algorithms for parametric models [4, 6, 8, 10, 11] (Fig. 1).

The goal of the orthogonal distance fitting is the estimation of the model parameters
minimizing the performance index

o02 (X _ X')TpTp(X X') (1.1)
or

U0= dTpTPd, (1.2)

where XT = (XT,..., XT) and X =T = (XT.T .. ,XT) are the coordinates vectors of the
m given points and of the m corresponding points on the model feature, respectively.
Moreover, dT = (dl,..., ,dm) is the distances vector with di = IIXi - X111, pTp is the
weighting matrix. We are calling the fitting algorithms based on the performance indexes
(1.1) and (1.2) coordinate-based algorithm and distance-based algorithm., respectively.
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FIG. 1. Parametric features, and the orthogonal contacting point x' in frame xyz from
the given point Xi in frame XYZ: (a) Curve; (b) Surface.

In this paper, the model parameters a are grouped and simultaneously estimated
in three categories. First, the form parameters ag (e.g. three axis lengths a, b, c of an
ellipsoid) describe the shape of the standard model feature defined in model coordinate
system xyz (Fig. 1)

x = x(ag, u) with ag = (ai,.... ,al) T . (1.3)

The form parameters are invariant to the rigid body motion of the model feature. The
second and the third parameters groups, respectively the position parameters ap and the
rotation parameters a,, describe the rigid body motion of the model feature. in machine
coordinate system XYZ:

X=R-1 x+Xo or x = R(X - X0 ), (1.4)

where R- RKRWRW = (r, r 2 r3)T, R- 1 = RT

ap=Xo=(XoYoZo) T , and ar=(w, , )T .

A subproblem of the orthogonal distance fitting of a parametric model is the finding
of the location parameters {uj}IT=j, which represent the nearest points {X•}mL1 on the
model feature from each given point {Xj I}Ti,. The model parameters a and the location
parameters {uj}T1j will generally be estimated through iteration. By the total method [6,
10], a and {uj}T_ will be simultaneously determined, while they are to be separately
estimated by the variable-separation method [4, 8, 11] in a nested iteration scheme. There
could be four combinations for algorithmic approaches as shown in Table 1. One of the
algorithmic approaches in Table 1 results in an obviously underdetermined linear system
for iteration, thus, it has no practical application. We describe and compare the realistic
three algorithmic approaches in the following sections.
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Algorithmic approaches Distance-based algor. Coordinate-based algor.

Total method Underdetermined system I (ETH [6, 10])

Variable-separation method II (NPL [4, 11]) III (FhG, this paper)

TAB. 1. Orthogonal distance fitting algorithms for parametric models.

2 Orthogonal distance fitting algorithm I (ETH)
The ETH algorithm [6, 10] is based on the performance index (1.1), and simultaneously
estimates the model parameters a and the location parameters {uj},iT for the nearest
points on the model feature. We introduce the new estimation parameters vector b
containing a and {uj}~Th as follows,

T= (T ... UT = (a, aT, T, T,... , ).(a 1 . ), aga ar ,Ul, U

The parameters vector b minimizing the performance index (1.1) can be determined by
the Gauss-Newton method

Pax A = P(X - X')fk, bk+1 = bk + aAb, (2.1)

with the Jacobian matrices of each point X' on the model feature, from (1.3) and (1.4)

OX xx= ( ox OR-1 ' Xo
5, b +- R -- 5- x+ -+Ob-] /=ub

(R- Ox R-1x R 1x o9= ( R - at x 1 1 -5 0 1 ' ' ' 0 ji- 1 I 0 R'- 0 jiq - '-')' O 1

A disadvantage of the ETH algorithm is that the storage space and the computing time
cost increase very rapidly with the number of the data points, unless the sparse linear
system (2.1) is handled beforehand by a sparse matrix algorithm.

3 Orthogonal distance fitting algorithm II (NPL)
The NPL algorithm [4, 11] is based on the performance index (1.2), and separately estim-
ates the model parameters a and the location parameters {ui}im in a nested iteration
scheme ,2(Xmin min " ({Xj(a,u)}jni).

a I -

The inner iteration determines the location parameters {ui }I!, for the minimum distance
points {X•T}m, on the current model feature from each given point {Xj•=I, and, the
outer iteration updates the model parameters. In this paper, in order to implement the
parameters grouping of aT = (T a, aT), we have modified the initial NPL algorithm.

3.1 Orthogonal contacting point
For each given point xi = R(Xi - X0 ) in frame xyz, we determine the orthogonal contact-
ing point xý on the standard model feature (1.3). Then, the orthogonal contacting point
Xý in frame XYZ to the given point Xi will be obtained through a backward transform-
ation of xý into XYZ. We are searching the location parameters u which minimizes the
error distance between the given point xi and the corresponding point x on the model
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feature (1.3) D = (xi - x(ag, u))T(xi - x(ag, u)). (3.1)

The first order necessary condition for a minimum of (3.1) as a function of u is
S(D( = 1((xi -x(ag,u))TxuX _ 0. (3.2)

f(xi,x(ag,u)) = D D = (xi - x(ag,u))Tx, )

The condition (3.2) means that the error vector (xi-x) and the surface tangent vectors
Ox/Ou at x should be orthogonal. We solve (3.2) for u by using the Newton method
(how to derive the Jacobian matrix Of/Ou is shown in Section 4).

Of
"fuu Au -f(u)Ik, Uk+1 Uk + Au. (3.3)

3.2 Orthogonal distance fitting

We update the model parameters a minimizing the performance index (1.2) by using
the Gauss-Newton method (outer iteration)

pOd
P - Aa = -Pdjk, ak+1 = ak + +Aa.

O~a k

From di = IIXi - X'11, and equations (1.3) and (1.4), we derive the Jacobian matrices of
each orthogonal distance di

S adi- (Xi - Xv)T 0Xu=ua

(X T(R-(x OxOu'\ 1  O0X a
IN -X?3 Oa au a - -a x -a /

With (1.4) and (3.2) at u=u',
(X, -X_ )TR1u = (x - x.)T _uuR- axR-X x'au Lut Ou ___

and J - (X i _ X ý)T a( Ox ., - -r )

andJIa -- VA- x Oag uuar

is the resultant Jacobian matrix for di. A drawback of the NPL algorithm is that the
convergence and the accuracy of 3D-curve fitting (e.g. fitting of a circle in space) are
relatively poor. 2D-curve fitting or surface fitting with the NPL algorithm do not suffer
from such problems.

4 Orthogonal distance fitting algorithm III (FhG)

At the Fraunhofer Institute IPA (FhG-IPA), a new orthogonal distance fitting algorithm
for parametric models is developed, which minimizes the performance index (1.1) in a
nested iteration scheme (variable-separation method). The new algorithm is a general-
ized extension of an orthogonal distance fitting algorithm for implicit plane curves [1].
Interested readers are referred to [2] for the orthogonal distance fitting of implicit sur-
faces and plane curves. The location parameter values {u }IT=1 for the minimum distance
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points {X}J= 1 on the current model feature from each given point { X}il are to be
found by the algorithm described in Section 3.1 (inner iteration). In this section, we
intend to describe the outer iteration which updates the model parameters a minimizing
the performance index (1.1) by using the Gauss-Newton method

pOx, Aa = P(X - X')Ik, ak+1 = ak + aAa, (4.1)Oa k

with the Jacobian matrices of each orthogonal distance point Xý, from (1.3) and (1.4)

JxýO. =  Xa x=x =( -Oa + xOu OR-a - ax
5 + 5a-+

--R(x _u Ox OR-1 x,
= R a1Ox +a R-1 ax I I OR • (4.2)

Tu Ta __U + Oýag --5Oar

The derivative matrix Ou/Oa at u= uý in (4.2) describes the variational behavior of
the location parameters u' for the orthogonal contacting point xý in frame xyz relative
to the differential changes of the parameters vector a. Purposefully, we derive Ou/Oa
from the condition (3.2). Because (3.2) has an implicit form, its derivatives lead to

Of Ou Of Oxi Of Ofau (Of Oxi Of (
au -aa + -axi a =0 or +-- a--a +- 5, (4.3)

where Oxi/Oa is, from xi =R(Xi - X,),

Oxi OR Xi-X)-RaOX 0/ R IOR(i X.
a -a -a = Oar "

The other three matrices Of/Ou, Of/Oxi, and Of/Oa in (3.3) and (4.3) are to be directly
derived from (3.2). The elements of these three matrices are composed of simple linear
combinations of components of the error vector (xi - x) with elements of the following
three vector/matrices Ox/Ou, H, and G (XHG matrix):ax V (Go) a ( x

Ox H ~x•,, xe,,=(4)
= (x, V xv), H= G= G __ 5-

au Xvu XV G2 Xj g 1 X (4.4)

Of ((x, - x)Tx2 1 1, (X, - x)Txu,

9U (XU xV)T(xu X') - (X, _ x)Txvu (X, - x)Txw,

Of xT Of -x (X,-X)T G
(Xu Xv (XGO(X, - 0 0

Now (4.3) can be solved for Ou/Oa at u = uý, and the Jacobian matrix (4.2) and the
linear system (4.1) can be completed and solved for the parameter update Aa.

We would like to stress that only the standard model equation (1.3), without involve-
ment of the position/rotation parameters, is required in (4.4). The overall structure of
the FhG algorithm remains unchanged for all dimensional fitting problems of parametric
models. All that is necessary for a new parametric model is to derive the XHG matrix
of (4.4) from (1.3) of the new model feature, and to supply a proper set of initial para-
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Measured/given point Orthogonal contacting point

a'=(a o., C (p, K )(x,
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system XYZ - ------ - system XYZ
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FIG. 2. Information flow with the FhG algorithm.

X 5 6 5 5 3 2 0 -1 -1 0 3 4 7 9

Y 1 3 4 6 5 4 2 0 -2 -5 -7 -8 -10 -9
Z -3 -1 1 3 5 7 9 11 11 11 11 11 11 10

TAB. 2. Fourteen coordinate triples representing a helix.

meter values a 0 for iteration (4.1). An overall schematic information flow with the FhG
algorithm is shown in Fig. 2. The FhG algorithm shows robust and fast convergence
with 2D/3D-curve and surface fitting. The storage space and computing time cost are
proportional to the number of data points. A disadvantage of the FhG algorithm is that
it additionally requires the second derivatives a

2x/Oag5 u as shown in (4.4).

As a fitting example, we show the orthogonal distance fitting of a helix. The standard
model feature (1.3) of a helix in frame xyz can be described as follows. x(ag, u) =

x(r, h, u) = (r cos u, r sin u, hu/27r)T, with a constraint on the position and rotation
parameters fc (a(, ar) = (X 0 - X)Tr3(wP ) = 0,

where r and h are respectively the radius and elevation of a helix. X is the gravitational
center of the given points set and r 3 (see (1.4)) is the vector of direction cosines of
the z-axis. We have obtained the initial parameter values from a 3D-circle fitting, and
a cylinder fitting, successively. The helix fitting to the points set in Table 2 with the
initial values of h = 10 and r, = 7r terminated after 0.22s, 8 iteration cycles for IIAaI =

3.2 x 10-7 with a Pentium 133 MHz PC (Table 3, Fig. 3). They were 0.33s, 10 iteration

cycles for 1IAaII =3.6 x 10-7 with the ETH algorithm, and, 1.05s, 61 iteration cycles for

IlAall =8 8x10-7 with the NPL algorithm. The computing cost with the ETH algorithm
increases rapidly with the number of the data points. The NPL algorithm showed slow

convergences with the 3D-circle and the helix fitting (3D-curve fitting).
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Parameters fA c0 r h X.
3D-Circle 5.8913 8.3850 -- 5.6999

u(A) -- 0.7355 -- 0.9939
Cylinder 1.6925 8.2835 -- 4.7596

0'(A) 0.2738 -- 0.7465
Helix 2.2301 6.1368 19.5811 3.8909

()-- 0.4238 1.3214 0.5488

y.o Zo W K

-2.7923 5.2333 -0.6833 0.7882 --

0.8421 0.8821 0.1177 0.1375 --

-3.0042 4.5081 -0.4576 1.1327 --

0.4525 0.6513 0.3049 0.2116 --

-1.5560 6.4871 0.3003 0.5114 2.4602
0.3934 0.7500 0.0880 0.0663 0.2881

TAB. 3. Results of the orthogonal distance fitting to the points set in Table 2.

8 X_ X_ X_ 6F

,/ýa 'D -e o a- -9 - '-.A

fl h14 + + +÷ + +"2

I .8-2

4 ..- X Z0 4 2

" _ (f .mb

0 4 8 12 16 20

(a) (b)
FIG. 3. Orthogonal distance fitting to the points set in Table 2: (a) Helix fit; (b) Con-
vergence of the fit. Iteration number 0-3: 3D-circle, 4-12: circular cylinder, and 13-:
helix fit with the initial value of h = 10 and = 7r.

5 Summary
In this paper, we have reviewed the current orthogonal distance fitting algorithms for
parametric curves and surfaces in an easily understandable manner, and presented a new
algorithm. By each of the algorithms the model parameters are grouped and simultan-
eously estimated in terms of form/position/rotation parameters. The ETH algorithm de-
mands a large amount of storage space and high computing cost, and the NPL algorithm
shows relatively poor performance with 3D-curve fitting. The newalgorithm, the FhG
algorithm, has no such drawbacks of the ETH algorithm or of the NPL algorithm. A
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disadvantage of the FhG algorithm is that it requires the second derivatives a 2x/8ag,9u.
The FhG algorithm does not require a necessarily good set of initial parameter val-
ues, which could also be internally supplied as demonstrated with the fitting examples.
From the viewpoint of implementation and application to a new model feature, the FhG
algorithm isuniversal and very efficient. Merely the standard model equation (1.3) of
the new model feature is eventually required, which has only few form parameters. The
functional interpretation and treatment of the position/rotation parameters are basic-
ally identical for all parametric models. The storage space and the computing time cost
are proportional to the number of given data points. Together with other orthogonal
distance fitting algorithms for implicit models [2], the FhG algorithm is certified by the
German federal authority PTB [5, 9], with a certification grade that the parameter es-
timation accuracy is higher than 0.1jam for length unit, and 0.1yrad for angle unit for
all parameters of all tested model features.
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